Multiresolution Kernel Approximation for Gaussian Process Regression
نویسندگان
چکیده
(a) (b) (c) Figure: (a) In a simple blocked low rank approximation the diagonal blocks are dense (gray), whereas the off-diagonal blocks are low rank. (b) In an HODLR matrix the low rank off-diagonal blocks form a hierarchical structure leading to a much more compact representation. (c) H2 matrices are a refinement of this idea. (a) In simple blocked low rank approximation the diagonal blocks are dens (gr y), whereas th off-diagonal blocks are low rank. (b) In an HODLR matrix the low rank off-diagonal blocks form a hierarchical structure leading to a much more compact representation. (c) H2 matrices are a refinement of this idea. Multiresolution Kernel Approximation (MKA)
منابع مشابه
Understanding Gaussian Process Regression Using the Equivalent Kernel
The equivalent kernel [1] is a way of understanding how Gaussian process regression works for large sample sizes based on a continuum limit. In this paper we show how to approximate the equivalent kernel of the widely-used squared exponential (or Gaussian) kernel and related kernels. This is easiest for uniform input densities, but we also discuss the generalization to the non-uniform case. We ...
متن کاملGaussian Approximation of Local EmpiricalProcesses Indexed
An extended notion of a local empirical process indexed by functions is introduced, which includes kernel density and regression function estimators and the conditional empirical process as special cases. Under suitable regularity conditions a central limit theorem and a strong approximation by a sequence of Gaussian processes are established for such processes. A compact law of the iterated lo...
متن کاملMercer kernels and integrated variance experimental design: connections between Gaussian process regression and polynomial approximation
Abstract. This paper examines experimental design procedures used to develop surrogates of computational models, exploring the interplay between experimental designs and approximation algorithms. We focus on two widely used approximation approaches, Gaussian process (GP) regression and nonintrusive polynomial approximation. First, we introduce algorithms for minimizing a posterior integrated va...
متن کاملMercer Kernels and Integrated Variance Experimental Design: Connections Between Gaussian Process Regression and Polynomial Approximation | SIAM/ASA Journal on Uncertainty Quantification | Vol. 4, No. 1 | Society for Industrial and Applied Mathematics
This paper examines experimental design procedures used to develop surrogates of computational models, exploring the interplay between experimental designs and approximation algorithms. We focus on two widely used approximation approaches, Gaussian process (GP) regression and nonintrusive polynomial approximation. First, we introduce algorithms for minimizing a posterior integrated variance (IV...
متن کاملA robust autoregressive gaussian process motion model using l1-norm based low-rank kernel matrix approximation
This paper considers the problem of modeling complex motions of pedestrians in a crowded environment. A number of methods have been proposed to predict the motion of a pedestrian or an object. However, it is still difficult to make a good prediction due to challenges, such as the complexity of pedestrian motions and outliers in a training set. This paper addresses these issues by proposing a ro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017